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On the scattering of sound by a magnetic field in a MHD fluid
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Abstract. We investigate the effect of a localized magnetic field on the propagation of sound in an infinite
fluid described by the magnetohydrodynamic equations (MHD). An externally imposed magnetic field will
scatter an acoustic wave, and the scattered wave is related to the spatial structure of the magnetic field.
Measuring it is thus a non-intrusive probe for the magnetic field. Simple examples likely to be encountered
in practice are worked out, and estimates are given that suggest the practical feasability of this diagnostic
tool in current MHD experiments.

PACS. 42.25.Fx Diffraction and scattering – 47.65.+a Magnetohydrodynamics and electrohydrodynamics
– 52.35.Dm Sound waves

The propagation of a wave in a non homogeneous me-
dium generates a scattered wave which carries informa-
tion about the structure of the objects responsible for the
scattering. This basic fact has been widely used in con-
densed matter physics to study the distribution of atoms
through X-ray scattering, and the distribution of magnetic
moments through neutron scattering.

More recently, interaction of acoustic waves with hy-
drodynamics flows has been investigated. The velocity gra-
dients in a flow scatter acoustic waves and the scattering
pattern is related to the flow vorticity. Based on this con-
cept non-intrusive probes of the vorticity have been con-
structed in order to study swirling and turbulent flows [1].

Electrically conducting fluids described by the MHD
equations are quite widespread and a particulary inter-
esting example is a liquid metal. The flow of such a
liquid in the Earth interior is responsible for magnetic
field generation by dynamo effect [2]. In the last years,
many attempts to see this effect in laboratories have been
made [3]. In these facilities, the possibility of using a non-
intrusive probe for the magnetic field is quite interesting
and following sound-flows interaction ideas, it is natural
to investigate the effect of a magnetic field on the sound
propagation. In the following, the discussions of orders
of magnitude are restricted to the case of liquid metals
but notice that the calculations are valid for any fluid de-
scribed by the MHD equations, in particular for plasmas
described in the MHD framework.

In this note we report results of an investigation into
the interaction of acoustic waves with magnetic field in
a fluid described by the MHD equations. This problem
has been studied by Lyamshev and Skvortsov [4], who

showed that the magnetic field will scatter the acoustic
wave, and that the scattering amplitude is proportional to
the Fourier transform of a quadratic function of the mag-
netic field. Their formulation is valid in three dimensions
and for a static field. In this paper we provide an alter-
native derivation of Lyamshev and Skvortsov’s result [4],
and extend it to the case of a time dependent magnetic
field and for two dimensional situations. In the acoustic
limit, where inertia terms can be neglected in the Navier-
Stokes equation, we derive the wave equation obeyed by
the sound if a magnetic field is applied. This equation
for the acoustic velocity field is written in an equivalent,
integral equation form, using the Green function of the
free-propagating wave equation. In the first order of the
Born approximation and in the far-field limit [1], the scat-
tered wave is calculated and is a function of the imposed
magnetic field. General properties of the scattering are
presented and some patterns are discussed for simple 2-D
configurations.

The velocity field v, the magnetic field B and the pres-
sure field P in an electrically conducting fluid with den-
sity ρ, electrical conductivity σ, kinematic viscosity ν fol-
low the equations

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇P + ρν∇2v +
(∇× B) × B

µ0

(1)
∂B
∂t

= ∇× (v × B) +
1

µ0σ
∇2B, ∇ ·B = 0, (2)

∂ρ

∂t
+ ∇ · ρv = 0, (3)
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where µ0 is the magnetic permeability of the vacuum.
This set of equations is usually completed with a ther-
modynamic equation that relates the pressure and the
density P (ρ). Assume that the fluid is submitted to an
external magnetic field B0. The fluid density at rest is ρ0

and the isentropic compressibility is χ. We suppose that
the magnetic field does not create any flow so the basic
state of the fluid is at rest. This is the case when the
Laplace force is exactly balanced by the pressure force.
We write B = B0 +Bs, P = P0 +Ps, ρ = ρ0 +ρs, v = vs.
The terms X0 are related to the fluid at rest whereas Xs

stands for the medium perturbation due to the acoustic
wave, and thus are considered to be small compared to
the former ones. The magnetic diffusivity of the fluid is
η = (µ0σ)−1 and c = (χρ0)−1 is the sound velocity in the
fluid. We write the equations at first order in the pertur-
bation fields

ρ0
∂vs

∂t
= −∇Ps + ρ0ν∇2vs +

1
µ0

(∇× B0) × Bs

+
1
µ0

(∇× Bs) × B0, (4)

∂Bs

∂t
= ∇× (vs × B0) + η∇2Bs, ∇ ·Bs = 0 (5)

∂ρs

∂t
= −ρ0∇ · vs, Ps = c2ρs. (6)

The last equation is the thermodynamic relation for isen-
tropic evolution. A diffusive term appears in (5). For an
acoustic wave with frequency ω, it can be neglected if
ω � c2/η. For common liquid metal, like liquid sodium,
we have η � 0.1 m2 s−1 and c � 103 m s−1 such that this
diffusive effect can be neglected for frequencies smaller
than 105 Hz. Another diffusive term is related to the vis-
cous dissipation. It can be neglected if ω � c2

a/ν where
ca = B0(ρ0µ0)−1/2 is the velocity of the Alfven waves
that can propagate in a conducting medium penetrated
by a magnetic field of amplitude B0 [5]. For liquid sodium
ρ0 � 103 kgm−3, ν � 10−6 m2 s−1 and for a magnetic
field B0 = 1 T , viscous dissipation can be neglected for
frequencies smaller than 108 Hz. This constraint for ne-
glecting viscous effects is less stringent than the former
one.

For frequencies such that we can neglect the dissipa-
tion terms, taking the time derivative of (4), the gradient
of (6), substracting one from the other and using (5) leads
to a wave equation for the acoustic velocity field:

1
c2

∂2vs

∂t2
−∇(∇ · vs) = S(B0,vs), (7)

where S is the sound-magnetic field interaction term,

S(B0,vs) ≡
1

ρ0µ0c2

(
−∇ (B0 · ∇ × (vs × B0))

+ (B0 · ∇)∇× (vs × B0) + (∇× (vs × B0) · ∇)B0

)
.

The inhomogeneous wave equation (7) can be turned
into an integral equation:

v = vi + G ∗ S(B0,v), (8)

where vi is solution of the homogeneous problem and
the other term is the convolution of the free propagation
Green function G(r, t, r ′, t′) with the coupling term S. The
Green function is a tensor that determines how a velocity
perturbation in (r ′, t′) propagates at (r, t). Its coefficients
in a Cartesian frame are solutions of

1
c2

∂2

∂t2
Gαβ − ∂α∂µGµβ = δ(r − r′)δ(t − t′)δα,β (9)

where δ(z) is Dirac’s delta function, δα,β is the Krönecker
symbol and a summation is made on repeated indices. The
solution of (9) in homogeneous space is only a function of
relative position and time Gαβ(r, t, r ′, t′) = Gαβ(r−r ′; t−
t′) and, in three dimensions, it is given by [6]

Gαβ(r; t) =
c2

4π

(
∂α∂β

(
1
r

)

−δαβ∇2

(
1
r

)) ∫ t

0

(t − τ)δ(τ)dτ

− c2

4π
∂α∂β

(
1
r

) ∫ r/c

0

τδ(t − τ)dτ

+
1
4π

rαrβ

r3
δ(t − r/c). (10)

For our purposes we need only the slowest decaying (in
space) component of this expression, the so-called far-field
term, given by the last term on the right of (10):

Gαβ(r, t, r ′, t′) ≈
δ
(
t − t′ − ‖r−r′‖

c

)
4π‖r− r′‖ uαuβ , (11)

where u = (r − r ′)/(‖r − r ′‖) and uα its components.
This expression is consistent with the intuition that only
components of the perturbation parallel to u propagate
because in a normal fluid, transverse perturbations do not
propagate, and at r the velocity perturbation is longitu-
dinal and thus parallel to u. Consequently, the tensorial
part of the far-field Green function is simply a projection
on u.

Substitution into equation (7) and taking the limit of
distances large compared to the size of the region where
the interaction between acoustic wave and magnetic field
takes place, ‖r − r ′‖ � ‖r ′‖, with u � r/‖r‖, we get

(G ∗ S(B0,v))(r, t) =
1

8π2r

∫
dνeiν(‖r‖/c−t)Hu,

H =
∫

dr ′ dt′eiν(t′−u·r ′/c)(S(B0,v) · u)(r ′, t′). (12)

As in other scattering problems, the perturbation in the
medium emits spherical waves whose amplitudes are re-
lated to the Fourier transform of the source term in (7). If
the source term decreases fast enough away from the re-
gion where the magnetic field is applied, vi is identified as
the incident wave and G ∗ S(B0,v) is the scattered wave.
In the Born approximation, this wave is small compared
to the incident wave and can be calculated perturbatively
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Fig. 1. Sketch of a sound scattering experiment on a localized
magnetic field. u0 is the direction of the incident wave and u
is the direction of scattering.

by iteration so that we write at first order

v = vi + vs,

vs = G ∗ S(B0,vi). (13)

Up to now, the derivation is valid both for time depen-
dent and static magnetic fields. Consider now the latter
case. We use Cartesian coordinates x, y, z associated to
unit vectors i, j, k. We suppose that the incident wave is
vi = vie

i(k0·r−ν0 t)u0 with u0 = i and calculate the scat-
tered wave in the u direction, as defined in Figure 1. We
define cos θ = u ·u0 and note Bx, By, Bz the components
of B0. After integration by parts of the terms contain-
ing spatial derivatives of the magnetic field, the following
expression for the scattered velocity is obtained

vs = vi
ν2
0C

ρ0 µ0 c4

eiν0(‖r‖/c−t)

4 π ‖r‖ u. (14)

The coefficient C is defined by the following expressions

C = T
(
(B0 · u0)2

)
− 1 + u0 · u

2
T

(
B0

2
)

− 2u0 · uT ((B0 · u0)(B0 · u))

+ (1 + u0 · u)T
(
(B0 · u)2

)

=
1 − cos θ − 2 cos2 θ + 2 cos3 θ

2
T

(
B2

x

)

+
1 + cos θ − 2 cos2 θ − 2 cos3 θ

2
T

(
B2

y

)

− 1 + cos θ

2
T

(
B2

z

)
+ 2 cos2 θ sin θT (Bx By) , (15)

where T (f) =
∫

dr′e−iq·r′f(r′) is the spatial Fourier
transform, with q = ν0

c (u−u0) the scattering wavevector.
The relative amplitude of the scattered wave at a dis-

tance r is vs/vi ≈ (ca/c)2 l3b/(λ2r) where λ is the wave-
length, lb the magnetic field characteristic size and ca the
Alfven waves velocity (see above). In liquid sodium and
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Fig. 2. Geometrical factors appearing in the coefficient C
of (15). Left figure (−·): factor for T
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for a magnetic field 3 T , this ratio is around 10−3 − 10−2.
Thus, the scattered wave can be measured experimentally.

In the long wavelength limit, the scattered amplitude
behaves like λ−2, and for short wavelengths the Born ap-
proximation breaks down. The optical theorem is not ver-
ified either because the calculation is limited to the first
order in the Born approximation [1].

We have given two expressions for C, a compact one
and one that uses the Cartesian component of the mag-
netic field. We now focus on the latter. The angular depen-
dence of the scattered wave comes from purely geomet-
rical coefficients and from the spatial Fourier transform
through the scattering wavevector. The purely geometrical
coefficients are plotted in Figure 2. Since these coefficients
do not vanish simultaneously, there is no extinction that
would be independent of the form of the magnetic field. In
transmission, for θ = 0, the scattered wave is directly pro-
portional to B2

y + B2
z , thus to the magnetic energy trans-

verse to the incident direction. This can be understood
since an acoustic perturbation is not coupled to a magnetic
field parallel to its direction of propagation. In backscat-
tering, for θ = π, the scattered wave depends only on the
B2

x term. The operation θ → −θ changes only the sign of
the coefficient related to BxBy. This can be understood
if we consider the symmetry by respect to the plane (i,k)
that gives θ → −θ and (Bx, By, Bz) → (−Bx, By,−Bz).

If the applied field is time dependent, with typical fre-
quencies large compared to the frequency of the acoustic
wave, a similar calculation can be done using (12). Con-
sider an harmonic in time magnetic field with frequency Ω:
B̃0 = B0 cosΩt, the scattered wave is the sum of three
terms of frequencies: ν0+2Ω, ν0 and ν0−2Ω. Each term is
given by (14) replacing ν0 by its corresponding frequency
and multiplying by the coefficient (ν0 + 2Ω)/(4(ν0 + Ω)),
ν2
0/(2(ν2

0 − Ω2)) and (ν0 − 2Ω)/(4(ν0 − Ω)) respectively.
The shift in frequency is the Doppler effect of the sound-
magnetic field interaction. Since the interaction term S is
quadratic in the magnetic field, the frequency shifts are
2 Ω, 0 and −2 Ω. This effect can be used in experiments
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Fig. 3. Absolute value of the coefficient C of (17) for πR2B2

0 =
1. (−): R/λ = .1, (−·): R/λ = .5, (−−): R/λ = 1, (·): R/λ = 2.

to discriminate the scattered wave from the reflection of
the incident wave on the boundaries of the experiment.

This calculation must be modified to tackle situations
that are invariant with respect to translations parallel to
an axis, say k. We then study the scattering in the (i, j)
plane and the spatial integrations are performed along x
and y only. The other change traces back to the asymp-
totic expansion of the Green function for such two dimen-
sional problems (2-D) [1]. In that case the scattered wave
is

vs = vi
2
√

2πe−iπ/4

ρ0 µ0 c2
C

(ν0

c

)3/2 eiν0(‖r‖/c−t)√
‖r‖

u, (16)

where C is given by (15) integrated over x and y only.
A simple example is a magnetic field tube of radius R,

B0 = H(R − r)B0k where R is the radius of the tube
and H is the Heaviside function. In this case the scattered
wave calculated with (16) is proportional to

C = −πR2B2
0

1 + cos θ

2
2J(1, qR)

qR
, (17)

where q =
√

2 − 2 cos2 θR/λ is the norm of the scattering
wavevector, λ = c/ν is the wavelength and J(1, z) is the
Bessel function of order 1. In Figure 3, we plot the absolute
value of C as a function of θ for fixed value of πR2B2

0 and
for different values of R/λ. As discussed before, there is
no backscattering in that case. Most of the scattering is
in the incident direction. For wavelengths bigger than the
size of the magnetic tube R, the scattering pattern tends
to its asymptotic value proportional to 1+cos θ. Note that
for λ � R the Born approximation does not apply.

We now want to be more explicit about what is meant
by localized magnetic field. In order to achieve finite values
of C, the magnetic field must decrease faster than r−3/2 in
3-D and r−1 in 2-D, otherwise the first order in the Born
approximation breaks down. Thus, the result can not be
applied to the field generated by a straight current fila-
ment. It is possible that in that situation Aharonov-Bohn
effects occur as in the case of the surface wave scattering
by a vortex with non-vanishing circulation [1].

We have calculated the acoustic wave scattered by a
localized magnetic field. The amplitude of this wave is a
function of the magnetic field and measuring it is a non-
intrusive probe of the magnetic field. If the field oscillates
at frequency Ω, part of the scattered wave is shifted by
Doppler effect from frequency ν0 to ν0 + 2Ω and ν0 − 2Ω.
For 2-D problems, a similar expression for the scattered
wave is calculated and some simple configurations for the
magnetic field are discussed. Using equation (14) in 3-D
or (16) in 2-D, the wave scattered by a localized magnetic
field can be numerically computed.
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